Skip to content Skip to navigation

Negative-emissions systems to protect climate

two charts - one featuring a map of the USA, the other is a line graph
Mar 12 2018
Research, Stanford, Students

Nearly every major plan to limit the damage from climate change relies in part on combining bioenergy with carbon capture and storage, a technology in early development known as “BECCS.” Feedstock plants would grow by absorbing carbon dioxide from the air, and the carbon-dioxide generated from burning the biomass to produce electricity would be captured and permanently stored underground. Producing electricity that actually reduces CO2 has obvious appeal.

However, estimates of the potential for BECCS in any given country have been based largely on the available biomass, whether from agricultural waste, forest management or the capacity to grow plants dedicated to energy production. Past BECCS estimates have almost always overlooked whether the biomass-growing areas are located near good underground sites for storing CO2. That is a problem, because transporting either biomass or CO2 can be expensive or subject to regulatory complications.

A new study for the first time examines in detail biomass growing sites, CO2 storage sites, co-location and transportation to estimate BECCS potential in the United States. In the near term, the technology if deployed rapidly could possibly remove 100-110 million tons of CO2 annually, the study finds. That is about 1.5% of total U.S. emissions currently.

Study author Katharine Mach is a 2008 Presidential Fellow, Biology

Read the full article